41 research outputs found

    From Text to Self: Users' Perceptions of Potential of AI on Interpersonal Communication and Self

    Full text link
    In the rapidly evolving landscape of AI-mediated communication (AIMC), tools powered by Large Language Models (LLMs) are becoming integral to interpersonal communication. Employing a mixed-methods approach, we conducted a one-week diary and interview study to explore users' perceptions of these tools' ability to: 1) support interpersonal communication in the short-term, and 2) lead to potential long-term effects. Our findings indicate that participants view AIMC support favorably, citing benefits such as increased communication confidence, and finding precise language to express their thoughts, navigating linguistic and cultural barriers. However, the study also uncovers current limitations of AIMC tools, including verbosity, unnatural responses, and excessive emotional intensity. These shortcomings are further exacerbated by user concerns about inauthenticity and potential overreliance on the technology. Furthermore, we identified four key communication spaces delineated by communication stakes (high or low) and relationship dynamics (formal or informal) that differentially predict users' attitudes toward AIMC tools. Specifically, participants found the tool is more suitable for communicating in formal relationships than informal ones and more beneficial in high-stakes than low-stakes communication

    A Framework for Designing Fair Ubiquitous Computing Systems

    Full text link
    Over the past few decades, ubiquitous sensors and systems have been an integral part of humans' everyday life. They augment human capabilities and provide personalized experiences across diverse contexts such as healthcare, education, and transportation. However, the widespread adoption of ubiquitous computing has also brought forth concerns regarding fairness and equitable treatment. As these systems can make automated decisions that impact individuals, it is essential to ensure that they do not perpetuate biases or discriminate against specific groups. While fairness in ubiquitous computing has been an acknowledged concern since the 1990s, it remains understudied within the field. To bridge this gap, we propose a framework that incorporates fairness considerations into system design, including prioritizing stakeholder perspectives, inclusive data collection, fairness-aware algorithms, appropriate evaluation criteria, enhancing human engagement while addressing privacy concerns, and interactive improvement and regular monitoring. Our framework aims to guide the development of fair and unbiased ubiquitous computing systems, ensuring equal treatment and positive societal impact.Comment: 8 pages, 1 figure, published in 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computin

    Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model

    Full text link
    Despite the plethora of telehealth applications to assist home-based older adults and healthcare providers, basic messaging and phone calls are still the most common communication methods, which suffer from limited availability, information loss, and process inefficiencies. One promising solution to facilitate patient-provider communication is to leverage large language models (LLMs) with their powerful natural conversation and summarization capability. However, there is a limited understanding of LLMs' role during the communication. We first conducted two interview studies with both older adults (N=10) and healthcare providers (N=9) to understand their needs and opportunities for LLMs in patient-provider asynchronous communication. Based on the insights, we built an LLM-powered communication system, Talk2Care, and designed interactive components for both groups: (1) For older adults, we leveraged the convenience and accessibility of voice assistants (VAs) and built an LLM-powered VA interface for effective information collection. (2) For health providers, we built an LLM-based dashboard to summarize and present important health information based on older adults' conversations with the VA. We further conducted two user studies with older adults and providers to evaluate the usability of the system. The results showed that Talk2Care could facilitate the communication process, enrich the health information collected from older adults, and considerably save providers' efforts and time. We envision our work as an initial exploration of LLMs' capability in the intersection of healthcare and interpersonal communication.Comment: Under submission to CHI202

    Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data

    Full text link
    Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present the first comprehensive evaluation of multiple LLMs, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4, on various mental health prediction tasks via online text data. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for the mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on the mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research

    MindShift: Leveraging Large Language Models for Mental-States-Based Problematic Smartphone Use Intervention

    Full text link
    Problematic smartphone use negatively affects physical and mental health. Despite the wide range of prior research, existing persuasive techniques are not flexible enough to provide dynamic persuasion content based on users' physical contexts and mental states. We first conduct a Wizard-of-Oz study (N=12) and an interview study (N=10) to summarize the mental states behind problematic smartphone use: boredom, stress, and inertia. This informs our design of four persuasion strategies: understanding, comforting, evoking, and scaffolding habits. We leverage large language models (LLMs) to enable the automatic and dynamic generation of effective persuasion content. We develop MindShift, a novel LLM-powered problematic smartphone use intervention technique. MindShift takes users' in-the-moment physical contexts, mental states, app usage behaviors, users' goals & habits as input, and generates high-quality and flexible persuasive content with appropriate persuasion strategies. We conduct a 5-week field experiment (N=25) to compare MindShift with baseline techniques. The results show that MindShift significantly improves intervention acceptance rates by 17.8-22.5% and reduces smartphone use frequency by 12.1-14.4%. Moreover, users have a significant drop in smartphone addiction scale scores and a rise in self-efficacy. Our study sheds light on the potential of leveraging LLMs for context-aware persuasion in other behavior change domains

    Rethinking Human-AI Collaboration in Complex Medical Decision Making: A Case Study in Sepsis Diagnosis

    Full text link
    Today's AI systems for medical decision support often succeed on benchmark datasets in research papers but fail in real-world deployment. This work focuses on the decision making of sepsis, an acute life-threatening systematic infection that requires an early diagnosis with high uncertainty from the clinician. Our aim is to explore the design requirements for AI systems that can support clinical experts in making better decisions for the early diagnosis of sepsis. The study begins with a formative study investigating why clinical experts abandon an existing AI-powered Sepsis predictive module in their electrical health record (EHR) system. We argue that a human-centered AI system needs to support human experts in the intermediate stages of a medical decision-making process (e.g., generating hypotheses or gathering data), instead of focusing only on the final decision. Therefore, we build SepsisLab based on a state-of-the-art AI algorithm and extend it to predict the future projection of sepsis development, visualize the prediction uncertainty, and propose actionable suggestions (i.e., which additional laboratory tests can be collected) to reduce such uncertainty. Through heuristic evaluation with six clinicians using our prototype system, we demonstrate that SepsisLab enables a promising human-AI collaboration paradigm for the future of AI-assisted sepsis diagnosis and other high-stakes medical decision making.Comment: Under submission to CHI202
    corecore